August 29, 2023

Virtues in the Professions

Virtues in the Professions

‘Can the professions be virtuous?’ This is the one of the big questions explored by the Jubilee Centre for Character and Virtues. The Centre has sought to explore the place of character and virtues in professional education and practice through its ‘Virtues in the Professions’ research. This research has led to a series of short booklets delivering key messages about bringing character to life for the five professions studied. The booklets can be accessed by clicking the links below. If your discipline is not covered, pick one of interest and see how the key messages may also relate to your area of practice.


August 21, 2023

Learning that matters – Teaching in Higher Ed podcast

Learning that matters podcast

‘I ask myself, what matters to me and why? And am I living that in my teaching?’ These are the questions that the authors of the book, Learning that Matters, discuss in this podcast. They share ways that they try to live their values in their teaching and their interactions with students. All resources discussed in the podcast can be accessed from the episode webpage. You can find out more about the Learning that Matters book on this webpage. You might also find the Helpful Resources page useful.


August 14, 2023

Pedagogical wellness specialist: the role that connects teaching and well–being

This short THE Campus piece outlines the creation of a new role in the University of California that focuses on the connection between faculty well-being and student outcomes. It is an interesting read for those interested in fostering and supporting a culture of well-being for staff and, ultimately, students.


August 07, 2023

Embedding compassionate micro skills of communication in Higher Education

This short paper reports on the implementation and evaluation of a strategy to embed compassionate communication in group work. The evaluation “demonstrated several benefits, including positive experiences of group work and increased group/social cohesion”. The authors give a more detailed account of the implementation and evaluation data collected in this recorded presentation (46 mins).


July 31, 2023

"Don’t think they know it” – Neha Gupta

My reflections on being interviewed for Asst. Professor as an internal candidate

This blog discusses my personal reflections on the experience of interviewing for an Assistant Professor role which I recently applied for following a fixed term contract in a teaching capacity here at Warwick. I thought being an internal candidate would offer a unique advantage. I am well positioned and capable of showing my best side in an interview but despite my teaching accolades and accreditation which made me an eligible candidate for interview, I felt uncomfortable and partially disappointed with my performance. I know I could have done better. Therefore, I thought to pen this experience which might prepare fellow colleagues for any such future endeavours.

Pros: Being an internal candidate for the Assistant Professor interview at the University has its fair share of advantages. On the plus side, I was already familiar with the institution's culture, values, and expectations. This familiarity gave me a unique advantage to prepare myself for questions such as – 'Why would you like to work here?' To answer this, I leveraged my existing knowledge about school initiatives, academic programmes, teaching and research goals, and project synergies. This allowed me to seamlessly integrate my own knowledge and experience into the existing framework and to contribute to the institution's academic mission. Also, all the examples I shared in the interview, whether it was module feedback from students or course related statistics were already known by some of the faculty members present in the panel, and perhaps gave me the confidence to bring across the point I’m making in the interview.

Cons: Being an internal candidate also presents bigger challenges, which I never expected or rather got perplexed about when I faced them. One significant one is dealing with the confusion of knowing and not knowing the interview panel. I’ve given interviews in the past where the people sitting across the table are completely unknown to me thereby giving me an opportunity to showcase my greatest version, articulating skills and knowledge that I possess in the best possible way to win the job. In contrast, the interview panel I faced here had some people from senior faculty whom I was already working with for the last couple of years. Therefore, there was a tendency to resist sharing information which they might already know. I was repeatedly asking myself - am I doing too much in already telling them what some of them know? Simultaneously, my mind tells me that this interview should be treated in isolation to the positive performance I have evidenced through my work here in the University. I was constantly dealing with this confusion in my head during the interview process and as a result I didn’t share that I’m in possession of FHEA, or a WIHEA fellow, which are all very relevant points for the interview. These should have come across despite being present as information in my CV and application letter and I should have steered the answer to some of the academic questions in a manner that links my qualifications and accreditations to reveal that I’m a good fit for the job advertised.

I think, when it comes to interviews, it is important to approach the interview panel as unknown individuals, just like any other interview. Although it may be difficult, this mindset is crucial for one’s performance during the interviews. Since they are unaware of your capabilities, it is essential to have a prepared action plan to address any confusion that may arise in your mind during the interview. By doing so, you can excel in your performance regardless of whether the panel is familiar or unknown to you. Last, but not least it is also vital to be ready with the set of questions you can ask the panel (even though you are aware of the initiative your institution is taking). Perhaps, these could be related to the higher education sector as a whole and not just your own institution.


July 24, 2023

Using AI to evaluate film criticism – Lewis Beer

Introduction

Can ChatGPT evaluate the quality of insights in a student essay? In January 2023, Daisy Christodoulou published an article (Can ChatGPT mark writing?, No More Marking Blog) exploring this question. She tested ChatGPT using English essays, and found that while its grading and feedback were more or less aligned with her own, the AI was sometimes unable to spot fundamental problems in essays. Christodoulou offers some fascinating insights, but one thing she does not explore in any detail is the relationship between ChatGPT’s qualitative evaluation of an essay and the content of the essay itself.

In this post, I will share the results of my own brief experiment, in which I pasted two film reviews into ChatGPT and asked it to evaluate (and compare) the quality of insights in these reviews. My aim here was to use these texts as substitute ‘essays’, and consider how the AI-generated responses might help or hinder a marker in giving meaningful feedback.

The dialogues quoted from below were conducted on 23 March 2023, using the free ChatGPT 3.5. (I later repeated the dialogues with both this and ChatGPT 4.0, but found the responses from 23 March gave more substantial and interesting feedback. I will not discuss those later dialogues in this post.)

Review 1: Peter Bradshaw

To begin with, I asked ChatGPT to ‘Evaluate the quality of insight in the following review of the film Nomadland’, then pasted the text of Peter Bradshaw’s review of Nomadland from The Guardian. I wanted to see how it would respond to this vague request, in which I provided no criteria on which to base an evaluation.

The response did a good job of summarising the review using selected words from the text. For instance, at the end of its evaluation the chatbot said:

[Bradshaw] does offer a mild critique that the film could have been more explicit in its condemnation of the economic forces causing the characters' hardships. However, they still recognize the film's greatness and Chloé Zhao's exceptional filmmaking.

This is clearly pieced together from the following passage in Bradshaw’s review, in which I have highlighted the details used by ChatGPT:

[The film is] brought off with exceptional intelligence and style. Arguably it is not angry enough about the economic forces that are causing all this but it still looks superbly forthright. There is real greatness in Chloé Zhao’s film-making.

The paraphrasing techniques used here – transposing words like ‘exceptional’ and ‘greatness’ into slightly different contexts, and spelling out that ‘all this’ means ‘the characters’ hardships’ – are effective in ‘feedback’ terms, because they seem to indicate an understanding of the writer’s (i.e. student’s) argument. However, Bradshaw says the film is ‘not angry enough’, not that it is ‘not explicit enough’, and this may be a significant error.

In its final verdict on the review, ChatGPT said:

Overall, this review appears to be well-written and insightful, providing a thorough analysis of the film’s themes, characters, and style while also highlighting its strengths and potential weaknesses.

Without my having provided any criteria, the AI assumes that an insightful film review will explore themes, characters, and style, and that it will offer a balanced assessment of the film’s strengths and weaknesses.

More of ChatGPT’s ‘marking criteria’ emerged when I asked it to ‘Identify some ways in which the review could be improved’. It offered some valid points in response to this prompt. For example:

The review could have delved deeper into the film's technical aspects, such as its cinematography, editing, and sound design. While the review mentions the film's style and how it differs from traditional narrative-driven films, it could have gone into more detail about how the film achieves this style and what specific techniques the filmmakers used.

This is arguably an area where Bradshaw’s review falls short. Bradshaw does discuss how Nomadland differs from traditional narrative-driven films, and he does connect this with Zhao’s stylistic choices; in this part of his review, he might have discussed film-making technique in more detail. So the AI’s choice to structure feedback like this (‘While you did talk about x, you could have delved deeper into y...’) could be helpful for a student looking to improve their essay by building on their strengths.

On that note, here is another of ChatGPT’s constructive criticisms:

The review could have included a more critical evaluation of the film. While the review praises the film’s strengths, it could have offered a more balanced assessment that acknowledges both the film’s strengths and its weaknesses.

This picks up on the detail quoted above, from the AI’s initial evaluation, noting that Bradshaw’s critique of the film is ‘mild’. The AI has perhaps noticed that Bradshaw’s more negative language is limited to the very end of his review, and is couched in the word ‘arguably’. Again, if we imagine this as feedback being provided to a student, ChatGPT’s evaluations do a good job of mixing praise and criticism: ‘You balance your argument by acknowledging the film’s weaknesses, but you only do this briefly at the end – you could have included a more critical evaluation.’

Other responses, however, show ChatGPT’s limitations, and would constitute problematic essay feedback. For instance:

The review could have offered more specific examples of how the film explores its themes and characters. While the review mentions some of the film's themes, such as the impact of economic hardship on older Americans, it could have gone into more detail about how the film portrays these themes and how they are relevant to contemporary society.

This is not really a fair critique: Bradshaw does highlight specific examples of how the film explores ‘the impact of economic hardship on older Americans’, and he does allude to contemporary issues such as factory closures, the dominance of Amazon, and the importance of the tourist trade in this part of America:

...looking for seasonal work in bars, restaurants and – in this film – in a gigantic Amazon warehouse in Nevada, which takes the place of the agricultural work searched for by itinerant workers in stories such as The Grapes of Wrath.

Fern, a widow and former substitute teacher in Empire, Nevada – a town wiped off the map by a factory closure – who is forced into piling some possessions into a tatty van and heading off...

At times, the film looks like a tour of a deserted planet, especially when she heads out to the Badlands national park in South Dakota, where there is also tourist-trade work to be had.

ChatGPT also says:

The review could have provided more context for the film's production and reception. For example, the review could have mentioned the awards and critical acclaim that the film has received, or how it fits into Chloé Zhao's broader filmography.

Some of this is fair – the review was published after Nomadland’s Oscar success, so Bradshaw could have mentioned this – but it misses the contextual details Bradshaw includes about the film’s production:

Zhao was even allowed to film inside one of Amazon’s eerie service-industry cathedrals.

The movie is inspired by Jessica Bruder’s 2017 nonfiction book, Nomadland: Surviving America in the Twenty-First Century, and by the radical nomadist and anti-capitalist leader Bob Wells, who appears as himself.

The people she meets on the road are, mostly, real nomads who have vivid presences on screen.

As with the previous criticism, ChatGPT has not acknowledged key details of the review in its initial assessment, so its critique is not balanced: it is like a marker who blames a student for ‘not doing x’ when the student in fact spent several paragraphs on ‘x’. (Human markers sometimes do this, of course.)

Review 2: Beatrice Loayza

I then asked ChatGPT, ‘Is the following review of the film Nomadland more incisive than the previous one?’, and pasted the text of Beatrice Loayza’s review of Nomadland, from Sight & Sound. Again, I deliberately did not provide any assessment criteria. ChatGPT’s answer was ‘yes’, for several reasons – some valid, some less so. First of all, it said, Loayza ‘provides a detailed analysis of the film's themes and cinematography, as well as the performance of Frances McDormand’. This is fair, and picks up on one of the criticisms of Bradshaw cited above (namely his lack of attention to technical aspects). Loayza comments on specific camera techniques, naming the cinematographer and describing the light effects he achieves. She also does more than Bradshaw to explain why McDormand’s performance is so effective.

ChatGPT picks up on another of its own criticisms of Bradshaw by praising Loayza’s critical perspective on the film:

However, the review also criticizes the film's lack of force and clarity in its insights into labor in the 21st century and the exploitation of older Americans. The author points out that the film's depiction of workers exploited by Amazon feels too easygoing and questions the film's liberal naivete in addressing the conditions of the nomadic lifestyle. Overall, the review provides a more nuanced and thoughtful analysis of the film.

This draws upon the following passage in Loayza’s review; again, I have highlighted phrases that ChatGPT seems to have picked up on:

[The film’s] insights into labour in the 21st century, and the exploitation of an older generation of Americans, lack force and clarity. At the very beginning of the film, Fern is employed by Amazon’s CamperForce programme, which provides base wages and free parking space to seasonal workers in their 60s and 70s. In 2020, Amazon doubled its profits during a global pandemic, which makes Zhao’s easygoing depiction of workers exploited by the company feel rather toothless. That the film aims to capture the ways in which a kind of working-class American outsider struggles without fully addressing the conditions of that struggle casts over it the shadow of a questionable liberal naivete.

To re-cap:

  • In its initial assessment of Bradshaw’s review, ChatGPT noted that his critique of the film was ‘mild’
  • In suggesting improvements, it built on this comment by recommending a more balanced approach
  • And in drawing a comparison with Loayza’s review, it notes her more substantial version of Bradshaw’s criticism.

At each stage, the AI appears to be drawing upon specific evidence from the texts, rather than just ‘hallucinating’ these evaluative comments.

Elsewhere in its comparison between Bradshaw and Loayza, however, ChatGPT did hallucinate some differences in order to justify its verdict. I will not cite these here, as this post is already very long, but the inaccuracies were of a similar kind to those in the summary of Bradshaw discussed in the previous section.

Final thoughts

If these film reviews were formative essays that I had to mark, I could use ChatGPT’s feedback to offer legitimate praise and criticism, suggest improvements, and judge the relative merits of the two essays in relation to each other. However, I would also notice that ChatGPT misses important details in these texts and draws some un-founded contrasts between them.

In the course of this experiment, I tried several variations on the above prompts. Here are some things to note if you want to try a similar experiment yourself:

  • I fed the reviews into ChatGPT several times, and in a different order. When I asked it to make a comparative evaluation, it tended to prefer the second review (even if this was Bradshaw’s). When I asked if it could reverse its comparative evaluation (i.e. ‘Can you argue that the other review is more insightful than the first?’), its responses varied: sometimes it doubled down on its first opinion, sometimes it conceded that an alternative opinion could be justified. Again, the reasons given for these opinions ranged from ‘valid’ to ‘hallucinatory’.
  • This post demonstrates what Chat-GPT is capable of in the hands of a technically ignorant, time-poor amateur like me, but by using the right prompts and follow-up prompts, it would no doubt be possible to collate more credible ‘essay feedback’, and then ask the AI to present and construct this in an appropriate way. Have a look at the other articles and resources linked to on the AI in Education Learning Circle webpage, try an experiment of your own, and share the results in the comments below. In particular, you might think about the learning outcomes and marking criteria specific to your discipline, or your module, and consider how you might train ChatGPT to use these in evaluating a piece of text.

July 17, 2023

Who Uses AI, How, and When?

By Matthew Voice, Department of Applied Linguistics, University of Warwick

As I mentioned in my previous WJETT blog post, I have participated in a strand of the ‘AI in Education’ learning circle during the last few months. Over the course of our strand’s meetings regarding the role of AI in formative feedback, our focus has primarily been on the nature of the emerging generative AI technology. Our research and conversation has a great deal to contribute with regards to what large language models mean for the future of formative feedback. However, given that these models are tools, it is worth reflecting on the user, too.

Our learning circle represent educators and students from a wide range of degree programmes, and motivations for engaging with higher education will vary from student to student across all courses. Throughout our discussions, conversation has largely focused on the role of AI in the improvement of formative feedback for students who are motivated by a desire for academic excellence. Given that students in this position will likely be motivated to engage with extracurricular activities within the university (e.g. joining the WIHEA as a student member, partaking in surveys of student experience or voluntary training workshops), their voices will perhaps be heard most clearly during our present conversations.

But the experiences of these students are not representative of our cohort as a whole, or indeed of all points across an individual’s university journey. Many students may view academic writing – either across their degrees, or for certain assignments or modules – as an obstacle to be overcome. In these cases, the objective of academic writing shifts away from excellence, and towards the production of work which will simply allow the student to attain a passing grade. Engagement with GenAI for these students might not mean refinement and improvement; it may simply be a resource for the fastest or most convenient means of content generation.

Integrating GenAI into teaching and formative feedback requires a recognition of this spectrum of experience and motivation. In my previous WJETT blog I recommended that future discussion and planning should consider the reasonableness and realism when supporting students to use and think critically about GenAI. By this, I mean:

1) Reasonableness: Is the task being asked of the GenAI (e.g. to produce formative feedback on a draft assignment) one that it is capable of achieving?

2) Realism: Does our (educators, policy planners, researchers) understanding of engagement with GenAI reflect actual independent student use cases?

Assessing reasonableness through understanding what GenAI is capable of achieving will require ongoing review, and the development of support and training for staff in order to keep pace with developments. This, I think, has largely been the focus of the work done by the ‘AI in Education’ learning circle and the final report this group has produced. Going forward, we also need to consider how well we understand our students’ independent engagement with this sort of assistive technology. What tools and resources are they familiar with? How do they understand them? What do they do with them, and at what point(s) in their academic writing?

Grounding future policy and pedagogic resource development in relation to a realistic model of students’ use and understanding of GenAI will be a task as complex as anticipating the impact of future technological development in large language models. By acknowledging this, and undertaking this work, we best position ourselves to ensure that outputs and resources which arise from working groups such as ours will be meaningful to staff and students working across the university.


July 10, 2023

AI Feedback Systems: A Student Perspective – Mara Bortnowschi

The buzz is endless – AI is taking Higher Education by storm. Since the launch of ChatGPT, everyone seems to have an opinion, and rightfully so. It’s so new and we have yet to fully understand its potential and the impact it will have. Within academia, the general sentiment mostly surrounds concern for responsible use, as many students have heard their professors and lecturers warning them against its use. However, its rapid growth and widespread adoption demonstrate that it’s not going anywhere soon so instead of avoiding it, it should be given the time of day to understand the risks and challenges but also the opportunities it presents. Furthermore, I think the student voice in these discussions has been underrepresented, but really students can be the key to harnessing this technological advancement as an asset to enhancing learning and education.

The WIHEA group have already explored a number of subjects regarding AI in education from student perspectives that can be found on the group’s Artificial Intelligence in Education webpage. These have included emerging questions AI presents, the risks and ethics of academic integrity, evolving assessment styles to mitigate and integrate AI into assessment and how teaching may evolve. I will now explore some of the opportunities that are being presented with the widening availability and access to AI tools for students to enhance their learning and to generate formative feedback. While summative marking has been and continues to be required to be marked by human markers according to the UK Quality Code in Assessment (UKSCQA, 2018), formative feedback has more flexibility, and we are now presented with an opportunity to test and utilise the capabilities of these AI technologies in providing timely, constructive, and developmental feedback.

Existing feedback systems

This notion will be particularly explored with regards to formative elements of summative assessments. Feedback should allow a student to understand strengths and weaknesses of their work and if engaged with effectively, can be used to improve academic performance, and thus learning. Especially throughout the pandemic, we have seen the role of feedback change massively: as more of education has shifted online, reliance on formative assessments has increased as assessments for learning. This is in contrast to summative assessments which more so represent assessments of learning (Wyatt-Smith, Klenowski and Colbert, 2014). Formative assessments also are an opportunity for autonomous learning by developing one’s own skills and relying on self-motivation. It would also be fair to say that formative feedback can be self-assessment of sorts, as even though the formative feedback is generated externally, it is the engagement with, and learning you apply from it that will ultimately make a difference in each student’s performance.

AI generated feedback

So what could incorporation of AI in these feedback systems change? Well, the use of algorithms in generation of feedback is not an entirely new concept. Algorithms, such as Grammarly and Sketch Engine, have been around for a while and they can generate feedback on academic writing and are for the most part freely available, or students are granted access to them by their institutions. But with more complicated algorithms that use machine learning, we can apply them to provide specific and personalised feedback. To make this even more applicable, by integrating what could be different elements of summative marking criteria or rubrics, they could provide some of the most relevant feedback at a moment’s notice.

This application is indeed being explored right here at the University of Warwick. Isabel Fischer, a WBS professor, is trying to pilot a deep learning formative feedback tool that has the potential to provide more comprehensive feedback that was developed with WBS marking criteria at its core. By simply submitting a pdf or word document, the algorithm instantly produces a document of in depth feedback on the four aspects of WBS marking criteria. This could be just the start of developing similar department-specific feedback tools taking into account department-specific assignments, marking criteria, and writing styles for drafts of academic writing. While there are definitely some considerations to look out for, this is fascinating and shows great promise as a tool to increase student autonomy in adapting how they might approach assignments to still have the opportunity to personally benefit from formative feedback.

Considerations of using generative AI

The considerations I mentioned earlier are worth discussing as students are turning to generative AI technologies like ChatGPT more and more. While these technologies are being developed to simulate human intelligence, there are some things they are simply not capable of. For example, it lacks expressions or expressive language. If using them to generate feedback on your writing, you should be aware that they will not always be able to grasp the nuances or expressive language in that writing. In other words, any feedback you receive from AI should be approached critically. You decide what you implement from feedback you receive, and you are responsible for identifying and understanding what truly can improve your work. This is all part of the responsible use of AI, but really also goes for human generated feedback. Your assignment at the end of the day will still be marked by a human marker with in-depth subject-specific knowledge and skills that they are asking you to learn and demonstrate in your assignment. I think this is the quick, irresponsible and neglectful way people have been quick to exploit resources like ChatGPT, where they do not doubt any response it has generated and implement them into a piece of work, only to find that its references are wrong or entirely don’t exist. Firstly, this should not be the way we utilise it, as this is blatant plagiarism, but secondly, a critical approach should be used to (for example) verify references, and critically understand that the way AI answers can lack certain elements of context. Regardless, the point still stands: responsible applications of AI technologies should not be about using it to do your work, but using them to enhance or improve your outputs.

Engagement with AI technologies and feedback

A new level of engagement with AI has been seen since the release of ChatGPT and DALL-E. Perhaps this is rooted in the great advancement that this represented or, more sinisterly, the opportunity to exploit the technology to minimise workload. Regardless, everyone’s interest has been piqued, and the level of engagement has been massive, exceeding what anyone might have expected particularly from students. At the University of Warwick alone, students have made a total of 850,000 total site visits to ChatGPT in the first two months only on the university’s Wi-Fi (SWNS, 2023). I think it’s important to try to understand why this might be in order to be able to channel this traffic for good rather than just fear this alleged ‘cheating epidemic’ that the media has been dubbing it.

In contrast to the older algorithm technologies that have been around, like for example the previously mentioned Grammarly and Sketch, which experienced much more moderate levels of engagement and use. Reasons vary from lack of awareness, to limited breadth of feedback to language, or to lack of confidence in the feedback they provide. AI has surpassed some of these limiting factors in that it is capable of generating a wider breadth of feedback that can include language, style, structure and more. The confidence in the feedback it produces is reassured by the continuous concern from educators. If professors are afraid AI technologies can be used to write entire assessments, then they must be capable of doing so.

Further benefits

As a result, we have seen students be a lot more open to trying to use ChatGPT, and I think we should utilise this eagerness in a way that encourages students to enhance their academic achievements. By introducing resources such as Isabel Fischer’s feedback tool or teaching students how to formulate prompts for ChatGPT to generate similar constructive feedback, we can guide a smooth integration of ChatGPT into Higher Education practices. And there are so many more benefits we have the potential to see. For one, this alleviates a massive workload off staff. If such tools are available to take care of the writing style and structure, staff’s role in formative feedback can remain more focused on content. The speed (or even instantaneity) with which AI can produce feedback also makes feedback more accessible. Furthermore, students can engage with it as many times as they like, inputting multiple drafts, as they are less limited by staff work capacity. Also, different students work on different timescales and with different approaches when faced with an assignment. This further widens accessibility to students that might start assignments later that what might normally be a formative deadline. Communicating these advantages is key in order to achieve these outcomes and to harness this technology towards enhancing educational experience for both staff and students.

Conclusion and personal experience

In my experience thus far with using ChatGPT, I have had mixed feelings. On the one hand, I am very apprehensive of the fact that its use is quite contentious at the moment, with some professors explicitly prohibiting its use or consultation. On the other hand, it is a resource that is available and it feels foolish not to use what is at your disposal. Throughout the research that went into this article and discussion with faculty members about its potential to provide feedback, I have been introduced to a very clearly constructive way to engage with ChatGPT, that seems to make both staff and students happy. While we are still in the early stages of understanding the potential and risks of generative AI technology, at the end of the day this is a tool that will have implications for Higher Education and we are being faced with the possibility of either embracing it, in various ways such as to generate formative feedback, or let it escape our control at the cost of academic integrity, because it is clear that prohibiting its use will not prevent people from exploiting it.

For further queries: marabortnowschi@yahoo.ca or mara.bortnowschi@warwick.ac.uk (may expire soon)

Reference List

SWNS (2023). University of Warwick fears cheating epidemic as data reveals huge number of students visiting AI website during exams. [online] Kenilworth Nub News. Available at: https://kenilworth.nub.news/news/local-news/university-of-warwick-fears-cheating-epidemic-as-data-reveals-huge-number-of-students-visiting-ai-website-during-exams-176836 [Accessed 19 Jun. 2023].

UKSCQA (2018). UK Quality Code for Higher Education Advice and Guidance Assessment. [online] Available at: https://www.qaa.ac.uk/docs/qaa/quality-code/advice-and-guidance-assessment.pdf?sfvrsn=ca29c181_4 [Accessed 16 Jun. 2023].

Wyatt-Smith, C., Klenowski, V. and Colbert, P. (2014). Assessment Understood as Enabling. The Enabling Power of Assessment, pp.1–20. doi:https://doi.org/10.1007/978-94-007-5902-2_1.


July 03, 2023

Embedding and assessing compassion in the university curriculum

In this short video (21 mins), Theo Gilbert explains the principles and rationales for rooting the science of compassion into the 21st century degree programme. It is the first of a series that aims to support colleagues in learning more about the research on this topic and how, in simple and practical ways, you can apply this research to your own practices.

You can access the full playlist of short videos in this series on this webpage.


June 26, 2023

Using AI for Formative Feedback: Current Challenges, Reflections, and Future Investigation

By Matthew Voice, Applied Linguistics at the University of Warwick

One strand of the WIHEA’s working group for AI in education has focused on the role of AI in formative feedback. As part of this strand, I have been experimenting with feeding my own writing to a range of generative AI (ChatGPT, Google Bard, and Microsoft Bing), to learn more about the sorts of feedback they provide.

The accompanying presentation documents my observations during this process. Some issues, such as the propensity of AI to ‘hallucinate’ sources, are well-documented concerns with current models. As discourse on student use of AI begins to make its way into the classroom, these challenges might provide a basis for critical discussion around the accuracy and quality of the feedback produced by language models, and the need for student to review any outputs produced by LLMs.

Other common issues present different challenges for students using LLMs to elicit formative feedback. For instance, the prompt protocol in the presentation revealed a tendency for AI to provide contradictory advice when its suggestions are queried, leading to a confusing stance on whether or not an issue raised actually constitutes a point for improvement within the source text. When tasked with rewriting prompt material for improvement, LLMs consistently misconstrued (and therefore left absent) some of the nuances of my original review, in a fashion which changed key elements of the original argumentation without acknowledgement. The potential challenges for student users which arise from these tendencies is discussed in more detail in the presentation’s notes.

In addition to giving some indication of the potential role of LLMs in formative feedback, this task has also prompted me to reflect on the way I approach and understand generative AI as an educator. Going forward, I want to suggest two points of reflection for future tasks used to generate and model LLM output in pedagogical contexts. Firstly: is the task a reasonable one? Using LLMs ethically requires using my own writing as a basis for prompt material, but my choice to use published work means that the text in question had already been re-drafted and edited to a publishable standard. What improvements were the LLMs supposed to find, at this point? In future, I would be interested to try eliciting LLM feedback on work in progress as a point of comparison.

Secondly, is the task realistic, i.e. does it accurately reflect the way students use and engage with AI independently? The review in my presentation, for example, presupposes that the process of prompting an LLM for improvements to pre-written text is comparable to student use of these programmes. But how accurate is this assumption? In the Department of Applied Linguistics, our in-progress Univoice project sees student researchers interviewing their peers about their academic process. Data from this project might provide clearer insight into the ways students employ AI in their learning and writing, providing a stronger basis for future critical investigation of the strengths and limitations in AI’s capacity as a tool for feedback.

This is blog 14 in our diverse assessment series, the two most recent previous blogs can be found here:


November 2024

Mo Tu We Th Fr Sa Su
Oct |  Today  |
            1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30   

Search this blog

Tags

Galleries

Most recent comments

  • Very interesting, thank you for sharing. Great CPD reflection. by Joel Milburn on this entry
  • Hi Lucy, Thank you for sharing the highs and lows of diverse assessments. I hope you have inspired o… by Anna Tranter on this entry
  • Hello Lucy, I totally agree with everything you have said here. And well done for having the energy … by Natalie Sharpling on this entry
  • Thank you for setting up this Learning Circle. Clearly, this is an area where we can make real progr… by Gwen Van der Velden on this entry
  • It's wonderful to read of your success Alex and the fact that you've been able to eradicate some pre… by Catherine Glavina on this entry

Blog archive

Loading…
RSS2.0 Atom
Not signed in
Sign in

Powered by BlogBuilder
© MMXXIV