The secret of success?
This TED talk makes a lot of sense to me, and chimes in with more than 35 years of lecturing experience. Have a look and see what it suggests to you.
This TED talk makes a lot of sense to me, and chimes in with more than 35 years of lecturing experience. Have a look and see what it suggests to you.
The following remarkable procedure is entirely feasible: if I have a class of n students then I can distribute n different binary images, one to each student, such that each student's image looks like white noise,
and yet if all images are combined together in the right way then a meaningful picture emerges.
What's more, I can arrange matters such that if any strict subset of the n students tried to collaborate, then all they would get would be more white noise, no matter how they manipulated their n-1 images!
So any strict subset of the students would possess no information at all about the butterfly picture, but combined all together they would be in a position to produce a perfect reproduction of the image.
How can this be done?
There are many other ways to implement secret-sharing (Google/Bing/DuckDuckGo the phrase "secret sharing"). But this one is nice for probabilists, because it provides a graphic example of why pairwise independence (independence of any two events taken from a larger collection of events) need not imply complete independence.
In your third year at Warwick you often have a drink with a friend who enjoys probability (yes, you make some strange friends here). On the Sunday evening before the start of Term 2 she challenges you to a curious game of chance. Hiding a fair six-sided die (numbered 0,1,2,3,4,5) from your observation, she throws it ten times and secretly notes each outcome on a convenient beer mat. Then she turns to you and announces:
"I shall now read you the running averages of the dice throws, but in reverse order.''
(You must have looked puzzled, because she breaks off to explain)
"Let Xn be the result of the nth throw, so the nth running average is Yn=(X1+...+Xn)/n. I will read out the numbers Y10, Y9, ..., Y1 in that order.''
Clearly a flicker of comprehension must have somehow crossed your face, because she now continues:
"At any stage you can stop me reciting the sequence. If the last average I read out was Yn then with probability Yn/5 (arranged using that book of random numbers which I carry everywhere) I will buy you a pint and the game ends. If you don't stop me at all then clearly you get a pint with probability Y1/5. Otherwise you buy me a pint.''
You calculate rapidly: E[Y1/5]=E[X1/5]=(1/6) (0+1+...+5)/5=1/2 even if you wait till the last number, and you get to choose when to stop. Must be to your advantage!
"Seems a reasonably good deal to me,'' you say.
"I'm glad you think so;'' she replies, "before we begin you can buy me a pint to compensate. Then we can play the game K times, where K is as large as you think it should be so that on average you come out ahead.''
How big should K be?
The very next day you hear about this course, ST318 Probability Theory; by the end of the course you'll have learned enough to be able to answer the above question instantly without any calculation at all. All this and 15 CATS credit too. Now that is what you call fair! How can you resist?
The following notes concern some calculations I have made relating to Zanella et al (2017). The considerations laid out below are entirely trivial, but are helpful in making it clear whether or not certain conditions might be logically independent of each other.
Consider a random variable X with probability density f(x) = eφ(x).
Is it possible for Ι to be finite while H is infinite?
Yes.
Consider a density f(x) which is proportional (for large positive x) to 1/(x log(x)2). Consequently φ(x) = constant - (log x + 2 log log x) for large x.
1: Using a change of variable (eu = x) it can be shown that H = - ∫ log(f(x)) f(x) dx is infinite. The contribution to the entropy H for large x is given by - ∫∞ log(f(x)) f(x) dx, controlled by
∫∞ (log x + 2 log log x) dx /(x log(x)2) = ∫∞ (u + 2 log u) eu du /(u2 eu) ≥ ∫∞du / u = ∞.
2: On the other hand elementary bounds show that Ι = ∫ φ'(x)2 f(x) dx can be finite. The contribution to the "Fisher information" Ι for large x is given by - ∫∞ φ'(x)2 f(x) dx, related to
∫∞ (1 / x + 2 / (x log x) )2 dx /(x log(x)2) = ∫∞ (1 + 2 / log x )2 dx /(x3 log(x)2) < constant × ∫∞ dx / x3 < ∞.
An example of such a density (behaving in the required manner at ±∞) is
f(x) = log(2) |x| / ((2+x2) (log(2+x2))2) .
Zanella, G., Bédard, M., & Kendall, W. S. (2017). A Dirichlet Form approach to MCMC Optimal Scaling. Stochastic Processes and Their Applications, to appear, 22pp. http://doi.org/10.1016/j.spa.2017.03.021
Here is a puzzle which I often use as a starter for a course of lectures on probabilistic coupling. The puzzle arose during some research -- I devised it as a simple example to show myself why a particular idea would not work -- and I developed the solution using calculations. In a lunch queue, I asked James Norris of Cambridge whether he could think of a calculation-free answer, and he found one almost immediately.
Convergence in probability is the simplest form of convergence for random variables: for any positive ε it must hold that P[ | Xn - X | > ε ] → 0 as n → ∞. This kind of convergence is easy to check, though harder to relate to first-year-analysis convergence than the associated notion of convergence almost surely: P[ Xn → X as n → ∞] = 1.
Convergence in probability is implied by convergence almost surely (most direct proof: express convergence almost surely in terms of more elementary events using countable unions and intersections and do some simple reasoning on the result), but is not implied by it. On the other hand a sequence of random variables that converges in probability always has a sub-sequence that converges almost surely. Moreover if every sub-sequence of a sequence of random variables contains a sub-sub-sequence that converges almost surely, then the original sequence converges in probability.
While studying the application of Dirichlet forms to Markov chain Monte Carlo (developing the work of Zanella et al, 2017), the following convergence-in-probability question arose:
Work on a given probability space (Ω, F, P). Suppose that random variables X1, X2, ... converge to X in probability.
Given a sub-σ-algebra G < F, is it the case that random variables X1, X2, ... converge to X in G-conditional probability?
In other words, is it the case that, for every ε>0,
If the conditioning is simply a conditioning on a single event of positive probability, then the answer is yes; consider that
so P[ An | B ] will converge to zero if P[ An ] does.
However the general answer is, of course, no. In a nutshell, consider a sequence of random variables that converges in probability but not almost surely. Condition on the entire sequence(!), thus rendering it entirely deterministic. There is a positive chance that the conditioned sequence fails to converge; and if so then it cannot converge in (conditional) probability. We now give an explicit example of a sequence that converges in probability but not almost surely, and spell out the details of why conditional convergence in probability then fails.
Consider a Uniform random variable U defined on [0, 1), using the usual Lebesgue σ-algebra F. Define X1, X2, ... as follows: consider the ensemble of events [(k-1)2-m, k2-m ) for k = 1, ..., m and m= 1, 2, ... Order these and let Xn be the indicator random variable corresponding to the nth event, while X= 0.. Then P[ Xn =1]=2-m if Xn is the indicator random variable corresponding to [(k-1)2-m, k2-m ), hence P[ | Xn - X | > ε ] → 0 if 0 < ε < 1. So certainly X1, X2, ... converge to X in probability. On the other hand, if G = F then almost surely the sequence X1, X2, ... contains infinitely many 1's as well as infinitely many 0's, so similarly for P[ | Xn - X | > ε | G ] = [Xn = 0], so almost surely P[ | Xn - X | > ε | G ] can never converge.
More generally, this sort of problem arises whenever the σ-algebra G contains a random variable whose distribution is not atom-free.
Exactly the same argument shows that Lp convergence does not imply "conditional Lp convergence".
However the facts that
can be used to evade the issues raised here. For example, in the case of the application of Dirichlet forms to Markov chain Monte Carlo, even though convergence in probability is not preserved under conditioning, these considerations can be used to prove a strategic conditional CLT ...
Zanella, G., Bédard, M., & Kendall, W. S. (2017). A Dirichlet Form approach to MCMC Optimal Scaling. Stochastic Processes and Their Applications, to appear, 22pp. http://doi.org/10.1016/j.spa.2017.03.021