March 12, 2022

Follow–up to "Modern algebra and the Poisson point process".

Follow-up to Modern algebra and the Poisson point process from Random Curiosities

Here is a related question. Suppose I show you a network of intersecting lines, and I secretly choose a self-avoiding path on the line network. I tell you the total lengths of the intersections of this self-avoiding path with each line on the network. Can you then reconstruct the path?

For networks of lines in general position, the answer is "yes", using an argument based on the ideas in the "Modern algebra and the Poisson point process" post.

However this is not the case for all networks, and in particular it is not the case for a network determining a regular cartesian grid. Ed Kendall demonstrated this by exhibiting the following counterexample.


Illustration of counterexample


- No comments Not publicly viewable


Add a comment

You are not allowed to comment on this entry as it has restricted commenting permissions.

Trackbacks

March 2022

Mo Tu We Th Fr Sa Su
Feb |  Today  |
   1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31         

Search this blog

Galleries

Most recent comments

  • More recently I have noticed the following elementary fact about convergence in probability. Suppose… by Wilfrid Kendall on this entry
  • Thanks to Martin Emil Jakobsen for pointing out a typo in the example of conditioning on a single ev… by Wilfrid Kendall on this entry
  • The paper includes a nice example of application of a log–normal distribution, which is used to mode… by Wilfrid Kendall on this entry
  • See also their webapp https://045.medsci.ox.ac.uk/ by Wilfrid Kendall on this entry

Blog archive

Loading…
Not signed in
Sign in

Powered by BlogBuilder
© MMXXIV