All entries for July 2012

July 20, 2012

Determinant of the Wronskian

The Wronksian of n functions f_1, \dots, f_n is the matrix determinant \begin{vmatrix}f_1&\dots&f_n\\\dots&\dots&\dots\\f_1^{(n-1)}&\dots&f_n^{(n-1)}}\end{vmatrix}. Its derivative is the matrix determinant \begin{vmatrix}f_1&\dots&f_n\\\dots&\dots&\dots\\f_1^{(n)}&\dots&f_n^{(n)}\end{vmatrix} (that is, the previous matrix with a different bottom row). It’s an interesting exercise to prove this, so let’s do that.

We proceed by our old friend, induction. For n=1 (or 0), the case is obvious. Let it be true through n-1. Expand by the bottom row:
\begin{vmatrix}f_1&\dots&f_n\\\dots&\dots&\dots\\f_1^{(n-1)}&\dots&f_n^{(n-1)}\end{vmatrix} = f_1^{(n-1)}\begin{vmatrix}f_2&\dots&f_n\\\dots&\dots&\dots\\f_2^{(n-2)}&\dots&f_n^{(n-2)}\end{vmatrix} + \dots + f_n^{(n-1)}\begin{vmatrix}f_1&\dots&f_{n-1}\\\dots&\dots&\dots\\f_1^{(n-2)}&\dots&f_{n-1}^{(n-2)}\end{vmatrix}
We take the derivative, applying our induction assumption, obtaining \begin{vmatrix}f_1&\dots&f_n\\\dots&\dots&\dots\\f_1^{(n-2)}&\dots&f_n^{(n-2)}\\f_1^{(n)}&\dots&f_n^{(n)}\end{vmatrix}+\left( f_1^{(n-1)}\begin{vmatrix}f_2&\dots&f_n\\\dots&\dots&\dots\\f_2^{(n-1)}&\dots&f_n^{(n-1)}\end{vmatrix} + \dots + f_n^{(n-1)}\begin{vmatrix}f_1&\dots&f_{n-1}\\\dots&\dots&\dots\\f_1^{(n-1)}&\dots&f_{n-1}^{(n-1)}\end{vmatrix}\right)
But the bracketed part is just \begin{vmatrix}f_1&\dots&f_{n-1}\\\dots&\dots&\dots\\f_1^{(n-1)}&\dots&f_{n}^{(n-1)}\\f_1^{(n-1)}&\dots&f_n^{(n-1)}\end{vmatrix}, which is zero as a matrix with repeated rows is singular. We are done.

July 2012

Mo Tu We Th Fr Sa Su
Jun |  Today  | Aug
                  1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31               

Search this blog

Galleries

Most recent comments

  • Nice proof! Does this mean you're going to specialize in analysis and differential equations next ye… by Nick on this entry
  • Hi Chris, It was most interesting to read your various reflections – thank you for sharing them. I'm… by Ceri Marriott on this entry
  • Feel free. Chris by Christopher Midgley on this entry
  • Hi Chris This is an honest final entry for the WSPA. Im glad that you have found the WSPA journey wo… by Samena Rashid on this entry
  • Knowing the maximum price you would be comfortable with paying for X is extremely useful for compani… by Nick on this entry

Blog archive

Loading…
Not signed in
Sign in

Powered by BlogBuilder
© MMXX